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Abstruct-Low Density Parity Check (LDPC) Codes provide 
near-Shannon Capacity performance for NASA Missions. 
These codes have high coding rates R=0.82 and 0.875 with mod- 
erate code lengths, n=4096 and 8176. Their decoders have in- 
herently parallel structures which allows for high-speed imple- 
mentation. Two codes based on Euclidean Geometry (EG) were 
selected for flight ASIC implementation. These codes are cyclic 
and quasi-cyclic in nature and therefore have a simple encoder 
structure. This results in power and size benefits. These codes 
also have a large minimum distance as much as d,,, = 65 giving 
them powerful error correcting capabilities and error floors less 
than lo-’’ BER. This paper will present development of the 
LDPC flight encoder and decoder, its applications and status. 

I. INTRODUCTION 

Largely neglected for 35 years, LDPC Codes has recently 
been undergoing a rediscovery. Invented by Gallager in 1965 
[l], it’s near-Shannon Capacity performance was first docu- 
mented by Mackay in 1996 [2]. These are large block codes 
with a very sparse (small density of “ones”) parity check ma- 
trix. Current research follows on two paths: computer gen- 
erated codes (generally unstructured and semi-random) and 
geometric codes (highly structured). 

11. COMPUTER GENERATED LDPC CODES 

Computer generated LDPC codes can be divided into two 
categories: Regular and Irregular. Regular LDPC codes have 
the property every column have a constant number of 
“ones” and every row has a constant number of “ones”, 
though the number of column “ones” are generally not same 
as the number of row “ones”. Irregular LDPC codes can have 
varying number of columns “ones” and row “ones”. 

A.  Regular LDPC Codes 

The properties of regular LDPC codes can be summarized 
as follows: the number of “ones” of each row and column are 
constant (because of this property Gallager codes are now 
classified as Regular LDPC codes) but small compared to the 
entire matrix and the number of “ones” in common between 
any two columns or two rows are small, preferably one. This 
last property allows for iterative decoding to converge to or 
close to the Shannon limit and provides for good minimum 

distance. Code synthesis is achieved through computer gen- 
eration as each new column is randomly synthesized and 
tested to ensure compliance with the properties outlined 
above. With soft-in and soft-out (SISO) iterative decoding 
Gallager LDPC codes perform close to the Shannon capacity 
limit [2]. 

B. Irregular LDPC Codes 

Irregular LDPC codes were introduced by Luby et al. [3] 
These are similar to the Gallager codes except that there is 
variance in the number of “ones” of each row and column. 
Like Gallager codes, irregular codes are computer generated 
and are decoded using the same iterative technique. They do 
outperform Regular codes in terms of distance to Shannon 
capacity at low signal to noise ratios. However, due to their 
small to moderate minimum distances both regular and ir- 
regular computer synthesized codes can have error floors 
around 10‘’ BER or larger. 

As a result of the semi-random nature of computer gener- 
ated LDPC codes, there is the issue of the encoder complex- 
ity (on the order of n2, where n is the length of the codewords 
in bits) since there are no algebraic or geometric relationships 
within the generator matrix. And as with any random-like 
code, a very large memory must be used to generate the code. 
The implementation of which can be resource consuming and 
can impact the space, power and weight for a spacecraft. 

111. GEOMETRY-BASED LDPC CODES 

Geometry based LDPC codes were developed by Kou, Lin 
and Fossorier [4]. These are a class of Regular codes based 
on parallel lines of finite geometry. Due to their geometric 
structure some of these codes are cyclic and quasi-cyclic in 
nature, have large minimum distances, require less iterations 
to achieve close to Shannon limit decoding performance and 
have no low error floor >lo’’ BER. They also have many 
decoding options: iterative decoding with belief propagation 
(IDBP), bit-flipping (BF), weighted BF, majority-logic (ML), 
and weighted ML decoding. Their encoding complexity are 
on the order of n and their encoding designs consist of a sim- 
ple chain of shift registers. 

One possible drawback to Geometry codes is that the de- 
coders are could be larger due to fact that they be more dense 
(larger number of “ones”) than Irregular codes. Thus Ge- 



ometry codes require more processing elements in SISO de- 
coding. This, however, is mitigated by the fact that the proc- 
essing elements all have the same internal and external struc- 
ture which allows for easy routing and layout of an integrated 
circuit (IC). This also cuts down on design time since once 
one element is designed then effectively all of the elements 
are designed, Computer generated codes are more difficult to 
route due to their randomness which impacts IC size and re- 
quire more design time since the processing elements are not 
identical. Ultimately, there may be very little difference in 
decoder size between Geometry and computer generated 
codes but in design time, Geometry codes have a clear advan- 
tage. And since Geometry codes require much less decoding 
iterations, they can outperform computer generated codes in 
decoding speed. 

Iv. CODE SELECTION 

For near-Earth space missions, Geometry-based LDPC 
codes are the obvious choice. The decision is based primarily 
on encoding complexity, BER performance, and decoding 
speed. The rationale, analysis and code details were pre- 
sented in a CCSDS Panel 1B White Paper [5] as a proposal 
for channel coding standardization. Two codes based on EG 
construction: (4095, 3367) and (8176, 7156) was selected. 
(The notation used here is (n, k) where n is the length of the 
codeword and k is the information size, both in bits.) 

There are a number of good texts explaining, in general, fi- 
nite Euclidean Geometry and it's application in coding theory 
[6,7]. The reader may wish to consult these texts as an aid to 
understanding what's to follow. 

V. EG (4095,3367) 

This code, denoted C1, is a (4095, 3367) cyclic LDPC 
code with rate R = 0.822 and minimum distance d,,,," = 65. 
Since it is cyclic, it is uniquely specified by a generator poly- 
nomial g(X) of degree 728 [4]. The degree of g(X) also de- 
fines the number parity-check bits of the code. Its encoding 
circuit can be easily implemented with a feedback shift- 
register using 728 flip-flops and no more than 728 X-OR 
gates. 

CI can be shortened, by deleting 7 information bits from 
each codeword, to a (4088, 3360) shortened cyclic code C1' 
with minimum distance of at least 65 and a code rate at about 
the same rate as the original code. For this shortened code, 
both data and block sizes are multiples of 8 to better suit the 
requirements of spacecraft and ground station processing 
elements. The encoding and decoding circuits for the original 
code can be used for the shortened code without any changes. 

I 

A. Code Construction 

Cl is constructed based on the lines and points of the 2- 
dimensional Euclidean geometry, EG(2, 25, over the Galois 
field GF(26). The geometry EG(2, 26) consists of 4096 points 
and 4160 lines. One of the points is the origin of the geome- 
try. Each line consists of 64 points. Let L be a line not pass- 
ing through the origin of the geometry. The incidence vector 
of line L is defined as a 4095-tuple over GF(2), 

where vi = 1 if and only if the ith non-origin point of EG(2, 
26) is on L, otherwise vi = 0. Then the parity-check matrix H ,  
of CI is a 4095 x 4095 square circulant (a cyclic matrix) with 
column and row weights of 64. The rows of HI are simply 
the incidence vectors of the 4095 lines in EG(2, 26) not pass- 
ing through the origin. This parity-check matrix can be easily 
generated by simply cyclically shifting the incidence vector 
of any line L not passing through the origin 4095 times. 7- ? 
B. Decoding Methods &q>y 

found in [4,6,7].) 
These decoders can be classified as either hard decision or 

soft decision and iterative or one-shot. ML and BF decoders 
are hard-decision decoders which can be simply implemented 
with logic gates and require only logic operations. But ML is 
one-shot, while BF is an iterative approach. 

The IDBP decoder is a soft decision (SISO), iterative de- 
coding which requires real-number computations. The 
weighted BF decoder is an iterative reliability-based decod- 
ing method which also requires some real number computa- 
tions so it can be viewed as a cross between a soft and hard 
design decoder. ML decoding is the simplest decoding but 
should give the least coding gain over the uncoded system 
compared with the other decoding methods. However it can 
be implemented to operate at a very high speed, for instance 
10-40 Gbps. There is also a weighted ML decoder that 
should give an improvement over the straight ML approach 
whose approach is similar to the approach used for weighted 
BF. This is another hard decision decoder that has elements 
of soft decision only this is a one-shot approach. BF and ML 
are similar in complexity and so are weighted BF and 
weighted ML. However, BF approaches have a longer de- 
coding delay than the ML approaches due to their iterative 
nature. The complexity of the weighted decoders are higher 
than their non-weighted counterparts but they should provide 
better error performance. 
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Fig. 1. EG-LDPC (4095,3367) BER Performance with Various 
Decoding Options 

C. Simulated Bit Error Rate (BER) Performance 

Figs. 1, 2 and 3 illustrate the simulated code CI perform- 
ance based on BPSK over an additive white Gaussian noise 
(AWGN) channel. 

Fig. 1 shows the error performance of bit and frame 
(block) error rates above l o 6 .  Fig. 2 shows the er- 
rorperformance of Cl above BER of 10". At the BER of 
lo8, the code with ML decoding achieves a 5.5 dE3 coding 
gain over the uncoded BPSK, while with IDBP, it achieves 
almost 8 aB coding gain over the uncoded BPSK. ML, 
weighted ML, BF, weighted BF and IDBP performance range 
from worst to best in that order. No error floor occurs above 
l o 8  BER for the iterative decoding. Note that the IDBP de- 
coder, as expected, provides the best BER performance with 
the largest decoding complexity. However, it requires a 
longer decoding time due to the iterative decoding process. 
To achieve high-speed decoding, a parallellpipeline decoding 
process is needed. 

The error floor of an LDPC code depends very much on its 
minimum distance. Code Cl has a very large minimum dis- 
tance = 65. For a code with a large minimum distance, either 
there is no error floor or the error floor occurs at a very low 
BER. Therefore, there should be no error floor at all or an 
error floor below 1 0 I o  BER. If there is no error floor above 
BER of lolo, C1 with IDBP would achieve at least a 9 dB 
coding gain over the uncoded BPSK. 

Figs. 1 and 2 also show that the code with IDBP also has 
good frame error performance. Frame error performance also 
depends very much on the minimum distance of the code. 
Computer generated LDPC codes, in general, do not have 
large minimum distance, and hence their h m e  error per- 
formance in general has error floor at a high frame error rate, 
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Fig. 2. EG-LDPC (4095,3367) BER and FER Performance 

Fig. 3. EG-LDPC (4095,3367) Iterative Convergence 

Though not simulated, it is possible to build a two-stage 
IDBP/ML decoder where two IDBP soft decision iterations 
are followed by an ML decoder to shorten the decoding time. 
This hybrid decoder not only shortens the decoding delay but 
also reduces the computational complexity with a small per- 
formance degradation compared to pure IDBP decoding. 

D. Simulated Iterative Per$ormance 

Another special feature of this code is that the IDBP de- 
coder converges very fast as shown in Fig. 3. The perform- 
ance gap between 2 iterations and 100 iterations is within 0.5 
dB, while the gap between 5 iterations and 100 iterations is 
less than 0.2 dB. Therefore, the decoding can be terminated 

for instance io". 
- 

after 5 iterations with only a 0.2 dB loss. This reduces the 
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Fig. 4. Majority Logic Decoding Testing at 400 Mbps 

decoding computational complexity and speeds up the decod- 
ing process (or shorten the decoding delay) significantly. 

Alternatively, as mentioned before, the decoding can be 

CZ is constructed based on the 3-dimensional Euclidean 
geometry EG(3,23) over the field GF(23). This geometry con- 
sists of 512 points and 4672 lines. Each line consists of 8 
points. For each point, there are 73 lines intersecting at it. 
The incidence vectors of the 4599 lines, not passing through 
the origin of the geometry, can be partitioned into 9 cyclic 
classes, Q,, Qz, . . . , Qg, each class consists of 51 1 incidence 
vectors. Each cyclic class Qi can be obtained by cycli- 
cally shifting any vector in Qi 51 1 times. For each cyclic 
Class Qi, a 5 11 x 51 1 square circulant matrix Ai is formed 
whose rows are simply the incidence vectors of Qi. Both the 
column and row weights of Ai are 8. Splitting each column of 
Qi into 4 columns of the same length with its weight uni- 
formly distributed into the 4 new columns as suggested by 
Kou, Lin and Fossorier [4], Qi can be partitioned into four 
5 11 x 51 1 square circulant matrices, A!'), A!'), A!", Ai(4). 
Each circulant A?? has column and row weights of 2. Using 
these 4 circulants, form a 5 1 1x2044 matrix, 

(2) G ~ =  pi('', ~ i ( z ) ,  4 3 ) ,  ,4!4)] terminated after 2 iterations followed with ML decoding - 
(two-stage iterativeML decoding). 

It is worthwhile to note that Computer generated LDPC 
codes, in general, converge at a much'slower rate and take at 
least 20 iterations to be close to the performance of 100 itera- 
tions. 

E. Measured Performance 

Fig. 4 shows the results of the Field Programmable Gate 
Array (FPGA) implementation of the EG (4095, 3367) en- 
coder and an FPGA ML decoder operating at 400 Mbps. 
These are Xilinx FPGA implementations which were tested 
with a BPSK modulation and AWGN channel. The graph 
verifies the simulated performance found in Fi . 1. It is also 

results give confidence that the IDBP decoder will perform 
very close to simulations. 

shows that there is no error floor down to 10'  4 BER. These 

VI. E~(8176,7156) 

This code, denoted CZ, is a (8176,7156) Euclidean geome- 
try LDPC code with rate R = 0.875. It is not cyclic but quasi- 
cyclic [6,7]. Every cyclic shift of 4 bits of a codeword is also 
a codeword. Its encoding can also be implemented with 
shift-registers. 

The column and row weights of Gi are 2 and 8, respectively. 
Then the parity check matrix H2 of C, is given below: 

] (3) 
GI G2 G3 G4 
Gs G6 Gi Gs 

The column and row weights of Hz are 4 and 32, respec- 
tively. C2 is simply the null space of Hz. 

B. Simulated PerJormance 

The bit and frame error performance of C, with IDBP is 
shown in Fig. 5. Both the BER and FER curves have a sharp 
waterfall characteristic. The BER erforms very well all the 

while the FER exhibits no error floor down to lo6.  At the 1 0  
9, the BER achieves more than 9 dB coding gain over the 
uncoded BPSK and performs only 1.2 dB from the Shannon 
limit. If there is no error floor above BER of 10" then Cz 
with iterative decoding should provide 10 dB coding gain 
over the uncoded BPSK. Decoding of C2 also converges very 
fast as shown in Fig. 6. At the BER of lo8, the performance 
gap between 10 iterations and 100 iterations is about 0.2 dB, 
while the performance gap between 20 iterations and 100 
iterations is within 0.05 dB. To shorten the decoding delay 
and reduce the computational complexity, the maximum 
number of iterations can be set to 10 with only a 0.2 dB per- 
formance loss. 

way down to the BER of 4x10-' B without any error floor 
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Fig. 5. EG-LDPC (8176,7156) BER and FER Performance. 

The exact minimum distance of Cz is unknown. But since 
there is no error floor down to the BER of almost its 
minimum distance should be relatively large. Experiments 
indicate that the minimum distance of Cz is at least 7. 

VII. PERFORMANCE COMPARISON WITH CURRENT STAN- 
DARDS 

Most near-Earth missions currently follow the CCSDS 
recommendation of concatenating a (1/2, 7) convolutional 
code (CC) with a (255,233) Reed-Solomon (Rs) code. Al- 
though this coding technique provides good coding gain, a 
heavy penalty is placed on the bandwidth efficiency. With a 
code rate of 0.44, an overhead of 0.56 or 56% of the band- 
width is consumed by the parity check bits. Bandwidth con- 
strained missions will sometimes chose to use RS coding 
alone to reduce the parity check overhead to 12%. However 
this comes with a large cost in additional power at the trans- 
mitter. 

Fig. 7 compares the BER performance of EG LDPC codes 
C1 and Cz with RS and CC/RS. Note that at 10" BER both 
CI and Cz outperform straight RS by 2.5 dB. This is a sub- 
stantial improvement. CI and Cz also comes within about 1 
dB of CCRS at lo-' BER. This signifies that these EG codes 
can replace CC/RS with only a 1 dB penalty in E n , .  And 
thus the complexity of the communication system is greatly 
simplified by the replacement of two codes (CCRS) with one 
(EG) and thereby doubling the bandwidth efficiency at the 
same time. Notice the closeness of the CI and Cz perform- 
ance curves with their corresponding capacity limit. CI is 
within 1.5 dB away while Cz is within 1 dB away. 
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Fig. 6. EG-LDPC (8176,7156) Iterative Convergence 
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VIII. SCHEDULE AND STATUS 

There are two parallel development tracks: 1.  Flight ASIC 
encoder along with the ASIC decoder and 2. the FPGA en- 
coders and decoders. As of the beginning of June 2003, C1 
has been designed for the flight ASIC and the FPGA. The 
flight encoder design has simulated to greater than 1 Gbps 
operation. It's fabrication is scheduled to be completed by 
the first quarter of 2004. As mentioned before, the FPGA 
encoder as well as the FPGA MGL decoder has been tested at 
400 Mbps. Currently, an FPGA IDBP decoder has been de- 
signed and is being optimized for operating speed. It's test- 
ing will be completed by the end of August 2003. The FPGA 
effort for Cz will begin immediately following this. An 
FPGA encoder and decoder of Cz will probably be completed 
by end of 2003. Also the ASIC decoders for Cl and Cz are 
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Fig 7. Comparison of LDPC EG codes with RS and CCRS 
codes 



undergoing an architectural study. Their fabrication won’t be 
completed until first quarter 2005. 
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